細胞的「鏽蝕」之舞 — 鐵凋亡 Ferroptosis (上篇)
細胞,也會「生鏽」嗎?
- 細胞,是生命最基本的單位,它們如何誕生、成長,又如何走向終結?你或許聽過「細胞凋亡」這種程式性的自我毀滅,但如果我告訴你,細胞還有另一種更為劇烈、更具破壞性的死亡方式,它就像金屬生鏽一樣,由「鐵」驅動,最終導致細胞結構崩壞,你是否會感到好奇?
- 這種獨特的細胞死亡機制,被稱為 Ferroptosis(鐵死亡)。它與我們熟悉的細胞凋亡截然不同,它不走尋常路,而是透過一種危險的化學反應——脂質過氧化來執行死亡任務。近年來,科學家們發現 Ferroptosis 不僅是實驗室裡的新奇現象,更與癌症、神經退化性疾病、器官損傷及發炎反應等眾多疾病息息相關。
- 今天,我們將深入探索 Ferroptosis 的核心秘密,了解它如何「鏽蝕」細胞,又如何在生命的病理進程中扮演著令人驚訝的角色。
細胞內部「生鏽」的秘密:鐵、脂肪與防鏽牆的崩塌
- 鐵過載:點燃鏽蝕的火花
- 鐵,是維持生命活動不可或缺的微量元素,它參與氧氣運輸、DNA 合成和能量產生。然而,過猶不及。當細胞內累積過多的亞鐵離子 (Fe2+) 時,它就變成了一把雙刃劍。這些過量的鐵會像失控的催化劑一樣,透過芬頓反應 (Fenton reaction) 大量產生活性氧物種 (ROS),這正是細胞「生鏽」的引爆點。
- 細胞內鐵過載的常見途徑包括:細胞膜上的轉鐵蛋白受體 (TFRC) 過度活躍,增加鐵的攝取;或者儲存鐵的蛋白質鐵蛋白 (ferritin) 異常降解,釋放出過量鐵離子,這個過程被稱為鐵蛋白自噬 (ferritinophagy)。
- 脂質過氧化:細胞膜的腐蝕
- 一旦 ROS 大量生成,它們會立即攻擊細胞內最脆弱的目標之一:細胞膜上的脂質,特別是含有多不飽和脂肪酸 (PUFAs) 的磷脂。這就像油品長期暴露在空氣中會產生**「油耗味」一樣,活性氧會導致這些脂質發生「氧化生鏽」,即脂質過氧化 (lipid peroxidation)**。
- 脂質過氧化會破壞細胞膜的完整性,導致粒線體萎縮、膜密度增加和嵴斷裂等形態學變化。最終,細胞膜失去功能,細胞便走向死亡。
- 防鏽機制失效:為何細胞無法自救?
- 健康的細胞擁有一套精密的**「防鏽塗層」或「防鏽劑」系統來對抗氧化損傷。其中,系統 Xc- (system Xc-) 負責將半胱胺酸運輸到細胞內,用於合成主要的抗氧化劑穀胱甘肽 (GSH)。而穀胱甘肽過氧化物酶 4 (GPX4)** 則是一種關鍵酶,它利用 GSH 將細胞內的脂質過氧化物還原成無毒的脂質醇,從而保護細胞。
- 在 Ferroptosis 中,這些關鍵的防禦機制遭到抑制或耗盡。例如,抑制系統 Xc- 的活性(如由 erastin 誘導)會導致 GSH 耗竭,而 GPX4 活性的喪失(如由 RSL3 誘導)則直接導致脂質過氧化物的累積,使得細胞失去抵抗能力,任由「鏽蝕」蔓延。
參考文獻
- Chen, X., Li, J., Kang, R., Klionsky, D. J., & Tang, D. (2021). Ferroptosis: Machinery and regulation. Autophagy, 17(8), 2054–2081. https://doi.org/10.1080/15548627.2020.1797284
- Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., Kang, R., & Tang, D. (2016). Ferroptosis: Process and function. Cell Death & Differentiation, 23(3), 369–379. https://doi.org/10.1038/cdd.2015.158
- Gao, M., Monian, F., Pan, Q., Zhang, W., Xiang, J., & Jiang, X. (2018). Ferroptosis is regulated by the TCA cycle and glutaminolysis. Molecular Cell, 72(6), 1017–1028.e3. https://doi.org/10.1016/j.molcel.2018.10.026
- Su, X., Wu, P., Sun, Y., Wu, J., Zhang, H., Tang, S., Wang, H., Zhang, Y., Wang, Y., & Tang, Q. (2022). HIF-1α activation mediated roxadustat-induced ferroptosis in chemoresistant GBM cells. Cell Death Discovery, 8(1), Article 273. https://doi.org/10.1038/s41420-022-01073-1
- Lee, S., Hwang, N., Seok, B. G., Kim, H., & Lee, E. (2023). Ferroptosis as an emerging target in inflammatory diseases. Progress in Molecular Biology and Translational Science, 172, 1–25. https://doi.org/10.1016/bs.pmbts.2020.02.002
- Ma, H., Xu, M., Yu, K., Cao, W., Li, H., Yang, M., Ren, H., Yang, H., Shi, Y., Li, T., Wang, Q., Li, J., Chen, J., Chen, T., & Yu, S. (2023). N-glycosylation of 4F2hc is required for its membrane localization and the interaction with xCT. Cell Death & Differentiation, 30(12), 2567–2581. https://doi.org/10.1038/s41418-023-01188-z
- Pan, Z., Van den Bossche, J.-L., Rodriguez-Aznar, E., Janssen, P., Lara, O., Ates, G., Massie, A., De Paep, D. L., Houbracken, I., Mambretti, M., & Rooman, I. (2023). Pancreatic acinar cell fate relies on system xC- to prevent ferroptosis during stress. Cell Death & Disease, 14(10), Article 353. https://doi.org/10.1038/s41419-023-06158-6
- Sun, J., Liu, Q., Jiang, Y., Cai, Z., Liu, H., & Zuo, H. (2023). Engineered small extracellular vesicles loaded with miR-654-5p promote ferroptosis by targeting HSPB1 to alleviate sorafenib resistance in hepatocellular carcinoma. Cell Death Discovery, 9(1), Article 362. https://doi.org/10.1038/s41420-023-01660-2
- Chuang, Y.-T., Yen, C.-Y., Chien, T.-M., Chang, F.-R., Tsai, Y.-H., Wu, K.-C., Tang, J.-Y., & Chang, H.-W. (2024). Ferroptosis-regulated natural products and miRNAs and their potential targeting to ferroptosis and exosome biogenesis. International Journal of Molecular Sciences, 25(11), Article 6083. https://doi.org/10.3390/ijms25116083
- Ren, H., Wang, M., Ma, X., An, L., Guo, Y., & Ma, H. (2024). METTL3 in cancer-associated fibroblasts-derived exosomes promotes the proliferation and metastasis and suppresses ferroptosis in colorectal cancer by eliciting ACSL3 m6A modification. Biology Direct, 13(1), Article 68.
- Wang, Y., Zhang, Y., Gao, M., Chen, Z., Lu, J., Li, Y., Di, Y., Zhao, Y., Liu, B., & Tang, R. (2024). Lipocalin-2 promotes CKD vascular calcification by aggravating VSMCs ferroptosis through NCOA4/FTH1-mediated ferritinophagy. Cell Death Discovery, 10(1), Article 114. https://doi.org/10.1038/s41420-024-07260-x
- Hu, W., Zhang, Z., Chen, Y., He, H., Wang, W., Yi, X., Li, X., Wang, Y., Zhu, Y., Li, M., Shi, Y., Fang, T., & Chen, X. (2025). The HIF-1α/GPX4 pathway may ameliorate DSS-induced colitis in mice by suppressing ferroptosis in colonic epithelial cells. Cell Death & Disease, 16(1), Article 7883. https://doi.org/10.1038/s41420-025-07883-8
- Jiang, H., Wang, X., Zhu, Z., Song, C., Li, D., Yun, Y., Hui, L., Bao, L., O’Connor, D. P., Ma, J., & Xu, G. (2025). DCAF7 recruits USP2 to facilitate hepatocellular carcinoma progression by suppressing clockophagy-induced ferroptosis. Cell Death & Disease, 16(1), Article 340. https://doi.org/10.1038/s41419-025-07873-w
- Loo, T. M., Zhou, X., Tanaka, Y., Sugawara, S., Yamauchi, S., Kawasaki, H., Matsuoka, Y., Sugiura, Y., Sakuma, S., Yamanishi, Y., Yotsumoto, S., Dodo, K., Shirasaki, Y., Kamatani, T., & Takahashi, A. (2025). Senescence-associated lysosomal dysfunction impairs cystine deprivation-induced lipid peroxidation and ferroptosis. Nature Communications, 16(1), Article 6617. https://doi.org/10.1038/s41467-025-61894-9
- Wang, S., Li, Z., Guo, S., Li, Y., Zhao, Y., Huo, B., Chen, Y., Yi, X., Liu, Y., Zhang, Z., Piao, J., & Jiang, D. S. (2025). ILF3 knockdown sensitizes colorectal cancer cells to ferroptosis by upregulating SLC3A2. Cell Death & Disease, 16(1), Article 7872. https://doi.org/10.1038/s41419-025-07872-x
- Yang, M., Wang, T., Shao, J., Ran, X., Xiao, R., Zhao, R., Wu, C., Ji, M., Tian, W., Sun, H., Liu, J., & Zuo, S. (2025). (+)-JQ-1 alleviates cardiac injury in myocardial infarction by inhibiting ferroptosis through the NAMPT/SIRT1 pathway. Cell Death & Disease, 16(1), Article 548. https://doi.org/10.1038/s41419-025-07880-x
- Zhang, H., Ma, J., Hou, C., Luo, X., Zhu, S., Peng, Y., Peng, C., Li, P., Meng, H., Xia, Y., Jiang, Z., Modepalli, S., Duttargi, A., Kupfer, G. M., Cai, M., Zhang, H., Ma, J., Li, J., Han, S., & Pei, H. (2025). A ROS-mediated oxidation-O-GlcNAcylation cascade governs ferroptosis. Nature Cell Biology, 27(3), 1–12. https://doi.org/10.1038/s41556-025-01722-w
#老年科學 Geroscience